Rotation Minimizing Frame (RMF)

- Unique up to an angle constant along the curve ($\varphi)$

Minimal twist
Stable at inflection points

Table I. Algorithm—Double Reflection	
Input: Points \mathbf{x}_i and associated unit tangent vectors \mathbf{t}_i , $i = 0, 1,, n$.	
An initial frame $U_0 = (\mathbf{r}_0, \mathbf{s}_0, \mathbf{t}_0)$.	
Output: $U_i = (\mathbf{r}_i, \mathbf{s}_i, \mathbf{t}_i), i = 0, 1, 2,, n$, as approximate RMF.	
Begin	
for $i=0$ to $n-1$ do	
	Begin
1)	$\mathbf{v}_1 := \mathbf{x}_{i+1} - \mathbf{x}_i$; /*compute reflection vector of R_1 . */
2)	$c_1 := \mathbf{v}_1 \cdot \mathbf{v}_1;$
3)	$\mathbf{r}_i^L := \mathbf{r}_i - (2/c_1) * (\mathbf{v}_1 \cdot \mathbf{r}_i) * \mathbf{v}_1; \qquad /* \text{compute } \mathbf{r}_i^L = R_1 \mathbf{r}_i \cdot * /$
4)	$\mathbf{t}_{i}^{L} := \mathbf{t}_{i} - (2/c_{1}) * (\mathbf{v}_{1} \cdot \mathbf{t}_{i}) * \mathbf{v}_{1};$ /*compute $\mathbf{t}_{i}^{L} = R_{1}\mathbf{t}_{i}.$ */
5)	$\mathbf{v}_2 := \mathbf{t}_{i+1} - \mathbf{t}_i^L$; /*compute reflection vector of R_2 . */
6)	$c_2 := \mathbf{v}_2 \cdot \mathbf{v}_2;$
7)	$\mathbf{r}_{i+1} := \mathbf{r}_i^L - (2/c_2) * (\mathbf{v}_2 \cdot \mathbf{r}_i^L) * \mathbf{v}_2;$ /*compute $\mathbf{r}_{i+1} = R_2 \mathbf{r}_i^L.$ */
8)	$\mathbf{s}_{i+1} := \mathbf{t}_{i+1} imes \mathbf{r}_{i+1}$; /*compute vector \mathbf{s}_{i+1} of U_{i+1} . */
9)	$U_{i+1} := (\mathbf{r}_{i+1}, \mathbf{s}_{i+1}, \mathbf{t}_{i+1});$
	End
End	

